Check for
Updates

Vocalizations of the Parus minor Bird: Taxonomy and Automatic
Classification

Artem Abzaliev*
University of Michigan
Ann Arbor, MI, USA
abzaliev@umich.edu

Kohei Shibata

Independent Researcher
Kamakura, Japan
ateliermochamura@gmail.com

Abstract

Previous research has revealed that Japanese tits (Parus minor)
use synthetic syntax to combine various elements of their vocal-
izations and derive complex meanings. We collect and annotate a
new dataset of vocalizations produced by the Parus minor bird and
develop a full taxonomy of individual phonemes for this species,
a total of 91 phonemes of different granularities. We provide an
in-depth overview of the phonemes and explore methods to classify
them automatically. Our best performing few-shot model achieves
13.9% multilabel accuracy on the test data.
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1 Introduction

Recent studies suggest that phonemes, which constitute the funda-
mental units of sound in human speech, also feature in the vocaliza-
tions of non-human species [2, 8, 16, 24]. In particular, an analysis
of the calls of the Japanese tit (Parus minor) has revealed that Japan-
ese tits form words using various phonemes, similar to that of the
phonemes in human languages, and then combine these phonemes
to create words to communicate [24]. To our knowledge, the exact
number of phonemes and their taxonomy have not been studied
before, which we address in this work. We propose a taxonomy of
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vocalizations by studying spectrograms and experimenting with
few-shot machine learning techniques to automatically label the
phonemes in the audiostream.

Our contributions are as follows:

e We propose a taxonomy to classify the phonemes in the
vocalizations of Parus minor, and present detailed analyses
of these phonemes. To our knowledge, no taxonomy for
Parus minor has been proposed before.

e We collect a comprehensive dataset of vocalizations from
Parus minor and annotate the dataset with phoneme infor-
mation using this taxonomy.

e We explore machine learning techniques to automatically
detect and classify existing audio files. Since there is no prior
taxonomy of vocalizations, machine learning algorithms can
serve as a soft check that the proposed taxonomy is valid. If
the machine learning algorithm can follow our taxonomy
and classify the vocalizations on unseen data with some
accuracy, it can indicates that our taxonomy is valid.

This work promises to enrich our understanding of animal com-
munication systems and showcases the potential of computational
approaches for deciphering the intricate soundscapes of wildlife.

2 Related work

There is a significant amount of research studying building blocks
that serve the role of phonemes in animal vocalizations. Sharma
et al. [16] studies sequences of clicks called codas in Sperm whales
(Physeter macrocephalus), and show that codas exhibit contextual
and combinatorial structure. Studies with the Gunnison’s prairie
dog (Cynomys gunnisoni) suggest that they are able to encode la-
bels about predator colors and species in their alarm calls [17, 18].
Engesser et al. [8] studies the ability to generate new meaning by
rearranging combinations of meaningless sounds. They show that
chestnut-crowned babbler (Pomatostomus ruficeps) uses the same
acoustic elements (phonemes) in different arrangements to create
distinct vocalizations.

Some earlier research found that even for birds that have a small
repertoire of calls, there are various types of alarm calls [14]. Field
studies have shown complex anti-predator communication in mul-
tiple species of birds, which have a high degree of variation in
frequency, duration, shape, and repetition rate, as well as combin-
ing notes or calls into complex sequences [20, 21]. Dutour et al.
[6] suggest a conserved perception of call ordering, where typical
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Figure 1: An example spectogram of the audio recording, showing time dimensions of the phonemes and the gap intervals

between them.

note orderings for alarm calls are shared across species. James et al.
[11] studies the Bengalese finch (Lonchura striata domestica) from
the perspective of acquisition, where they show the evidence of
vocal sequence learning between tutors and pupils. Other work
have been focusing on Carolina chickadees, Poecile carolinensis,
identifying structure in their calls with combinations of six notes
[9].

Suzuki et al. [24] have explored compositional syntax in the
Japanese tit, with experimental evidence for the use of different
notes, orderings, and combinations in their vocal repertoire. Addi-
tional work show that the Japanese tit have an ordering rule; they
are able to discriminate between different orderings of calls and
extract a compound meaning when the sequences follow a specific
ordering [25]. Zhang et al. [30] show that different populations
of Japanese tit use mostly similar notes, but also that each popu-
lation has some unique note types. Furthermore, referentiality in
the Japanese tit has also been explored, where the receiver of a
call becomes visually perceptive to an object resembling a predator
when hearing an alarm call [22, 23].

3 Data collection

Over a span of sixteen months, Kohei Shibata — an amateur or-
nithologist and one of the co-authors of this work — has observed
the behaviors of Japanese tits (Parus minor) within the northern
precincts of Kamakura City, situated in Kanagawa Prefecture, Japan.
The observations started in winter when the birds were active in
flocks, continued through the courtship season, and followed the
formation of pairs as they nested, laid eggs, incubated, hatched,
raised their young, fledged, left the nest, and resumed flock behav-
ior. The study involved auditory and visual documentation of the
subjects, accomplished through the utilization of a high-fidelity
sound recorder and a video camera.

The recording was done with a sampling frequency of 44.1kHz
and 32-bit floating point format. A total of 2,527 audio files were
recorded and subsequently annotated based on the spectral analysis.
Classification of these recordings was primarily achieved through
visual inspection of spectrograms, with instances requiring nuanced
discernment resolved through auditory discrimination, or some-
times visual information. A spectrogram is a visual representation
of the spectrum of frequencies of a signal over time. Commonly,
the horizontal axis represents time, the vertical axis represents
frequency, and a third dimension (usually color or brightness) rep-
resents amplitude. Parameters utilized for classification include
temporal attributes such as sound duration, alongside spectral char-
acteristics such as middle, lowest, and highest frequencies, as well
as the frequency of peak volume.

To add more context to the auditory analysis, visual footage
captured by a Panasonic Model No. AG-AC90 camera was used.
The sound recorder was a TASCAM Linear PCM Recorder DR-
07MK II, and the software used for acoustic analysis was Audacity
3.2.4 and Sonic Visualiser 4.5.1. Table 1 shows the summary of the
dataset collected.

3.1 Phoneme Analyses

3.1.1  Phoneme Identification and Naming. The audio recordings
were transformed into spectrograms, which we utilize for the iden-
tification of similar continuous segments exhibiting variations in
frequency or volume. These segments typically range in duration
between 0.1 and 0.6 seconds and are designated as phonemes. Each
recording comprises a sequence of these phonemes, interspersed
with approximately 0.1-second gaps. Figure 1 shows an example of
the annotation process.

Phonemes are distinguishable based on the acoustic character-
istics of the spectrogram and the frequency of the sound, with
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Table 1: Statistics of observations

Number of observations 2527
Number of phonemes 91
Shortest phoneme length 0.10s
Longest phoneme length 0.64s
Average phoneme length 0.12s
Minimum peak frequency 3.29 kHz
Maximum peak frequency 9.98 kHz
Average peak frequency 6.31 kHz
Number of words (phoneme sequences) 171

each isolated phoneme assigned a unique identification symbol
according to specified naming conventions. We note that this study
excludes phonemes present in the calls of chicks and young birds
due to their distinct length and waveform, despite their relevance
to the learning process.

The basic form of each phoneme is arbitrarily given an English
alphabetical name such as /P/ or /AN/. If a number is added, the
number indicates the main frequency band of the phoneme, for
example, /Pg/ is a sound around 6 kHz. Additionally, we add a
second letter to provide additional granularity to the phonemes.
These lower case letters are not exclusive, and some phonemes
contain up to three lower case letters. The lowercase letters after
the primary letter(s) are as follows:

- u = up, frequency rising

- d = down, frequency falling

- f = flat, frequency constant

- n = noisy, multiple sounds together

- v = variation,

- a = attached, different sound attached
- o = overlap, multiple frequencies

- s = short length

- m = middle/medium length

- 1 =long length

Primary and secondary letters result in a total of 91 phonemes.
We note that the number of phonemes may change based on addi-
tional observations and classification. Each phoneme can be divided
into the following nine groups based on its spectrogram shapes.
Representative examples of each group are shown in Figure 2.

(1) Group A: No change in frequency between the onset and
end:

/Psal, [Pa], [Pal], [P50], [ER], [Ps], [PesTs/, [PsT], [Ps8],

/P7S/,/P7f/,/P7u/,/Pg/,/Pgl/,/Pgm/,/Png/,/Pgn/,/PgSO/,

/Pss/, [Pos/, [Pola/, [P10s/
(2) Group B: A rise and then a fall in frequency, with other
sounds added to the first and second halves:
[Au/, |Auh/, [Aua/, |]ADD/, I[N/, [Psno/, [AB/, |AFF/
(3) Group C: A rise in frequency for the base tone:
/Fi/, [Hb[, [Psu/, [Psuo/, [P7uo/, []/, [Jp/. /Hil, [Pra],
/Pev/, [Pgsuv/, [Pssu/, [Pgual/, [Pou/
(4) Group D: A fall in frequency for the base tone:
/L], [Pado]/, [Ad], [Psd], Y]
(5) Group E: A short rise in frequency:
[Ah[, |Us], [P7], [P7d]
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(6) Group F: Spectrogram shape resembles the letter N:
IAf1. ICy/, [A]]. ID], [Q], [Pem[, [Psmu/, [Al], [Sv],
/AN/

(7) Group G: Spectrogram shape resembles the letter N but also
contains another sound near the top:
T/, /Gy/. /1], [Ful, [S], |AL], /X[, |Oh/, [Oi], [Pruso],
/He/

(8) Group H: Wave-shaped, repeat finely in high and low tones:
[Ws/, [Wd[, [W[, [WL],[V],[Vs]

(9) Group I: Unique shape (leftover category, ones not able to
be grouped with others):
/AC] . |AE/, |AG/, |AK][, [Ck[, [Fo], |[AM], [AA/, |G/,
Lo/, [M/

3.1.2  Word Identification and Writing. The vocalizations of Japan-
ese tits exhibit phoneme groups comprising consecutive phoneme
clusters, with inter-phoneme intervals typically less than 0.05 sec-
onds. Each phoneme cluster, arranged in a fixed sequence, is re-
garded as a single word. Additionally, calls consisting of a single
phoneme, such as "chi" or "ji," traditionally categorized as calls,
are also classified as words. When two words are concatenated
without intervening gaps, forming a continuous sequence, they are
counted as a single word. For example, if there are phonemes /A/,
/B/, /C/, ID/, [E/, /F/ forming the words [/A//B//C/] and [/D//E//F/],
the combined call of [/A//B//C//D//E//F/] is also counted as one
word. However, even when employed in similar contexts, calls like
[/A//B//C/][/D//E//F/] and [/A//C/][/D//E//F/] (where /B/ is absent)
are treated as distinct words, acknowledging potential errors. In-
stances such as [/F//F//F/][/A//B/] and [/F//F/][/A//B/] are likewise
regarded as separate words. Furthermore, words featuring numer-
ous consecutive identical phonemes, such as [/A//B/] followed by
eight consecutive [/F/] and [/A//B/] followed by five consecutive
[/F/], were deemed identical.

During the observation period, a total of 171 distinguishable
words were identified, with a comprehensive listing provided in
Appendix A. These words are categorized based on formal distinc-
tions rather than semantic or functional considerations. Among
the most straightforward to comprehend are the termed "chirp-
ing/twitter/singing" words, characterized by continuous repetition
of one or several phonemes for approximately 10 seconds, typically
interspersed with brief pauses of a few seconds. The spectrum of
identified words ranges from repetitions of single phonemes to
sequences of three phonemes. These repetitions are denoted as
follows when occurring for four or more sets: a sequence of a single
phoneme [/A/*n], a sequence of two phonemes [(/A//B/)*n], and
a sequence of three phonemes [(/A//B//C/)*n]. Instances where
multiple phoneme groups, such as /A//B//C/, are reiterated, are
treated as quasi-words and enclosed within parentheses. Notably,
besides being utilized independently, words were at times employed
repetitively with varying time intervals between them, fluctuating
between approximately 1-2 seconds and 3-5 seconds.

3.2 Observations and Analyses

Bird calls serve various functions, including territorial marking
and mate attraction, although distinguishing between communica-
tive calls remains challenging [5, 14]. Our audio analyses demon-
strate that Japanese tit vocalizations comprise a finite number of
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Figure 2: A comparison of the nine phoneme groups. Group A has a flat frequency, while group B has a rise and fall; group C
has a rise and group D has a fall. Group E contains a short rise, group F resembles the letter N, and group G also resembles an N
but has an additional sound. Group H is wave-shaped, and group I is the leftover category for phonemes that doesn’t fit the

other groups.

phonemes, akin to the 50 sounds in the Japanese alphabet or the
44 sounds corresponding to the 26 letters in the English alphabet.
Each word is constructed through a combination of these phonemes,
forming the basis for constructing phrases and sentences. Despite
their audible similarity, Japanese tit chirps and calls exhibit dis-
tinct spectrographic profiles. Furthermore, phoneme classification
confirms the distinctiveness of these vocalizations, suggesting the
existence of multiple versions within commonly used onomatopoeic
expressions like "tsutsupi” and "jajaja."

Instances occur where two phonemes, employed in sounds last-
ing approximately 10 seconds, seldomly serve the function of as
a single word. Consequently, these instances resemble humming
tunes, lacking direct meaning like single words but possibly con-
veying territorial declarations. Moreover, these "songs" are often a
medley of several different tunes simultaneously. Successive, spaced
vocalizations of words, unlike purely melodic renditions, appear to
convey meaning akin to songs with lyrics, particularly observed
in male nest-guarding tits. Furthermore, these songs are not im-
provised but adhere to set "tunes," indicating that all tits share a
common repertoire of a few songs.

Interestingly, these “songs” are often performed in the form of
several different songs at once. Successive, spaced vocalizations of
words that could be used alone (unlike the song-only ones) often
have meaning, similar to songs with lyrics. This phenomenon was
particularly evident in male nest-guarding tits. Moreover, these
songs are not improvised spontaneously but adhere to predeter-
mined "tunes", suggesting that all tits share a common repertoire
of a few songs. On the other hand, it was possible to deduce from
the context that words used alone or in combination with several
words are used as meaningful words to signify concepts such as
danger or food.

4 Machine Learning based Phoneme
Classification

The process of discovering and classifying phonemes or vocaliza-

tions even for a single species is laborious and requires significant

of effort from domain experts. However, as recent advances in Nat-
ural Language Processing have shown [4], a large volume of data

might be the key to successfully modeling human language. If this
assumption holds for animal communication studies, we might
need a large amount of data to make significant progress. Given the
large number of species in the world and limited number of domain
experts, we might never have enough effort to label the data to
advance our understanding of animal communication. Instead we
attempt to use advances in audio processing and machine learning
to alleviate this issue. We formulate the problem as follows: given
very few (2-5 examples) human-labelled annotations, can machine
learning models determine what leads to specific phoneme discov-
ery, i.e., frequency, spectrogram shape, etc, and infer the phonemes
in the unlabelled sequences?
We experiment with two approaches:

e Spectogram-based audio classification. The underlying audio
signal is represented as an image by the spectrogram, and
an image classification model (efficientnet_b0 in our case) is
used to make a prediction.

e Audio conversion to discrete tokens. We use an EnCodec
model [7], which is a neural audio codec, to transform raw
audio waves into a sequence of discrete tokens. The discrete-
ness of the underlying sequence has some desirable prop-
erties for interpretability, allowing us to use methods from
Natural Language Processing to understand which tokens
contributed to the prediction of specific phonemes.

To evaluate these approaches, we hold out a small sample of
audio files, without removing any background noise and without
any editing. These files are usually longer than in the training
data and the pauses are longer in between the words/phonemes.
Since our problem is multilabel classification, we report multilabel
precision, accuracy, recall and F1, as defined in [19]. Table 4 shows
the results for both approaches.

4.1 Spectrogram Based Phoneme Classification

Similar to how phonemes were analyzed in section 3, we exper-
iment with using a pre-trained computer vision model on mel-
spectrograms of vocalizations. The sample rate of raw audios is
32kHz. We construct melspectograms using PyTorch for each five
second interval of the audio, with the following parameters: 128
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mel filterbanks, 2048 for size of FFT and window length, 512 for
hop length, 20 Hz as minimum frequency. We use a variant of FO
Normalizer-Free ResNet ! [3, 26] pre-trained on ImageNet as a
backbone. Since the amount of data is very scarce, we apply data
augmentation techniques: we use SpecAugment [15] and Mixup
[27, 29]. For SpecAugment, both the frequency and time mask is
applied with a probability of 30% with mask_max_length=10 and
mask_max_masks=3. We use Binary Cross Entropy multi-label loss
since each audio file might include several phonemes. We train for
50 epochs with AdamW optimizer and learning rate 1e-3. During
the inference, we slice the audio into 5-second intervals and predict
a single phoneme for each 5-second interval. The final prediction
for a single vocalization clip includes all the unique phonemes
from those 5-second intervals. The average number of predicted
phonemes per file is 3.03. Table 4 shows the precision, recall, F1
score and accuracy for this approach. Given the scarcity of data per
single phoneme, we consider these results being rather significant.
With more data and human-in-the-loop annotation scheme similar
to [12], our proposed approach can be used to accelerate human
annotations.

4.2 Audio Conversion to Discrete Tokens for
Phoneme Classification

Our second approach consists of converting the audio signal into
discrete tokens. We use EnCodec, which is an encoder-decoder
architecture with residual vector quantizer [28] as a bottleneck
to compress the audio, i.e. at 48 kHz the model outputs 150 to-
kens per second instead of 48000 per second. We hypothesize that
compressed audio tokens can be correlated with the phonemes we
described in section 3, and thus allow us to learn the correspon-
dence between them. Le. some sort of simple rules: "if token 123 is
observed in the discretized audio, it indicates that the phoneme F is
present". To verify this hypothesis, we trained an EnCodec model
from scratch exclusively on Parus minor audio vocalizations. While
the EnCodec’s training data includes bird vocalizations from the
Audioset (74.6 hours in total) [10], the total fraction of bird vocal-
izations is less than 0.5% of the total duration of the training data
(17537 hours), with the majority of the data sources being human
speech, music, and general audio. There is also no splitting on bird
species, only one general category "birds".

We train the EnCodec model on a subset of all unlabeled audio-
clips, total of 1125 audio recordings, 15.22 hours. While the size
of the dataset is much smaller than the original EnCodec model
was trained on, it exclusively consists of Parus minor vocalizations,
which we hypothesize to be beneficial. We train a causal model for
20 epochs, with all the default parameters as in the EnCodec base:
SeaNet as an encoder/decoder, hidden dimension 128, two LSTM
layers. The model achieves a 3.052 Signal-to-Noise ratio [13] on
validation data. We also manually inspected a set of reconstructed
samples and we were unable to distinguish between the original
and reconstructed samples, which indicates the model was able to
reconstruct the signal specific for Parus minor. We note that the
reconstruction happens from the discrete tokens alone, thus these
discrete tokens should contain all the information that is present

Ihttps://huggingface.co/timm/eca_nfnet_10
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Table 2: Example of top 10 mutual information scores (nor-
malized) for phoneme E, tokens are from the first quantizer.

Token MI score

184 0.5337
844 0.4669
311 0.3734
727 0.3664
309 0.3107
44 0.3003
512 0.3003
319 0.3003
612 0.2864
167 0.2656

in raw audio. We can analyze the discrete tokens to see which
information they contain.

Mutual Information. Up to this point, the model was trained
without any information about the phonemes, in a fully unsuper-
vised fashion. At this step, we would like to analyze how the tokens
from the model can be used to predict the phonemes. We fully
tokenize our dataset, i.e. each audio becomes a sequence of dis-
crete tokens. We study how tokens/bigrams/trigrams can be used
to predict phonemes in the audio.

To do this, we calculate the adjusted mutual information scores
between the occurrence of a token/bigram from the first quantizer
and the occurrence of a phoneme in the audio recording. Le. given
a tokenized audio sequence [1, 2, 3, 4, 5] and a phoneme sequence
(/A, /B), for each pair [(1, /A), (1, /B) ... (5, /B)] we calculate a mutual
information score. This score represents how large the information
gained for predicting a phoneme from knowing that the audio to-
ken was present in the audio. If the mutual information score is
1, it means this particular token is only present for this particu-
lar phoneme and is never associated with other phonemes. More
broadly, the closer the score is to 1, the stronger the association
between a token and a phoneme.

An example of the mutual information scores for a single phoneme
is shown in Table 2.

We repeated the process with bigrams, trigrams, and four-grams
for the tokens, to see if a certain combination of tokens was also
unique to a set of phonemes. We analyze bigrams and trigrams for
sequences, as the length of two tokens combined was closest to the
average phoneme lengths. From the mutual information scores for
sequences using bigrams and trigrams of tokens, we extract a list
of the most-used phonemes with the highest normalized mutual
information score of 1. In theory, this means that when a certain
bigram or trigram of tokens appears in a file, a certain phoneme is
present.

Next, using the same EnCodec model, given an unseen data
stream, we predict if certain phonemes appear in the audio sequence
based on the token sequences generated by the model. If the bigram
is present in the tokenized audio sequence, we predict this specific
phoneme. The resulting accuracy of this approach is shown in table
4. The resulting performance is not statistically significant from
random, thus we did not experiment further with this approach.
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Table 3: Statistics of the train and test datasets

Train Test

# files 180 79
duration, #mins 13.77 75.4
# unique labels 76 39
# labels 407 154

Avg. # phonemes per file ~ 2.26 1.94

Table 4: Test set accuracy for two different approaches for
the automatic classification of Parus minor phonemes.

Approach Precision  Recall F1  Accuracy
Spectogram + NFNet 21.77  19.00 17.88 13.89
EnCodec + Mutual information 2.63 1.79  2.02 1.2

We believe one potential reason for the failure is that we only use
the first quantizer.

5 Conclusion and Future Work

In this work, we explored the individual phonemes produced by
Parus minor and the compositionality of these phonemes. We pro-
posed a taxonomy for the phonemes that incorporates the granu-
larity of the spectral signals. We showed that these phonemes can
be combined into words of various lengths. We also presented our
results when automatically classifying individual phonemes with
two different approaches, achieving 21.7% accuracy on the test data.

Our current work focuses on the phonetic side of the vocaliza-
tion without any semantics. The meaning and grounding of each
word will be the subject of future work, as they also require the
video recordings of the vocalizations. All the observations were
conducted in one area, the northern part of Kamakura City, and
previous research has shown that there are some differences in
the vocalizations depending on the area. Hence, comparing the
vocalizations of the tits to the other regions seeme to be an impor-
tant direction. Also, observing changes in language as the chicks
learn and acquire their vocabulary might bring interesting research
directions.

The notion that tits, like humans, can generate words by combin-
ing phonemes and construct sentences by assembling these words
implies the potential for them to innovate new vocabulary to adapt
to their surroundings or circumstances. This possibility opens up
interesting research directions.

It would be also interesting to see how the model pre-trained on
human speech performs on bird vocalizations since there is some
evidence that it helps for other animal vocalization tasks [1]. We
plan to investigate this in future work.

6 Ethics Statement

All the data was collected observationally, and no birds were harmed
or had their behavior adjusted in collecting this dataset.
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A Word List

Below is a list of words (phoneme sequences) observed more than

three times.

(1) [(JAA/[Au[) *n]

(2) [(/AB/[Af]) = n]

(3) [(/AC//Cy[) = n]

(4) [(/Ad//Pom[) * n]

(5) [(/ADD//AE]) *n]

(6) [(/AFF//AG/) = n]

(7) [(JAI/[A]]) *n]

(8) [(/Au//P7uf) + n]

(9) [(/Auh//AI]) = n]

10) [(/Auh//P7u/) * n]

11) [(/Cy//AB/) = n]
[(/]/+n)(/G/*n)]
[(/P67//Cy[) = n]
[(/P7f[/M]) = n]
[(/P8//Hi/[S][Hi])|Cy[(/G[*n)]
[(/P8//Hi/[S/[Hi[)/Cy/|G][G[]
[(/P8//Hi/[S//Hi])[Cy[]
[(/P8//Hi/[S//Hi[)/P8//P8]/L[]
[(/Q//Af]) *n]

[(/Q//Aua[) «n]
[(/V//P67s]) * n]
[(/V/]V][/Hb]) = n] <<<<<< [(/Vd//Vd//Hb]) * n]
[(/W/[+n)(/Wd/+n)(/Ws/=n)]

[(/W /xn)(/Ws/*n)]
[(/Wi[sn)(JW[xn)[Wd][Ws[[W[/W]]

[/AK /#n]

[/Ck//P7/(/]]*n)]
[/Ck//P7/]
[/D//P7u/]
[/Fi/[Fi/[L](/G/[*n)]
[/Fi/[Fi/[L[]
[/Fi/[Ful[Gy/]
[/Fi//Fu//Hu//Fi/]
[/Fi//Fu/[Hu/]
[/Fi/[Fu/[L[]
[/Fi//Hu/]
[/Fi//L]]
[/Fi/[P6m[[Gy][]
[/Fo//Fo/]
[/G/+n]
[/Hi//AN/[Hi/[AN/]
[/Hi//Hi/[L[]
[/Hi//Hi//N/]
[

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(44) [/]/(/G[+n)]

12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31)
32)
33)
34)
35)
36)
37)
38)
39)
40)
41)
42)
43)
44)
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(45
(46
(47
(48
(49
(50
(51
(52
(53
(54
(55
(56
(57
(58
(59
(60
(61
(62
(63
(64
(65
(66
(67
(68
(69
(70

) [/J/(/L/*n)]

) [/J/*n]

) LT11T]1Af ]
) U/J/17117//L] /L] L[]
) [/J/1]]/N/]

) [/J/1]/P4o/]
Y UJT1IL]1T11T]]
) [/J//L/]

) [/J]/T/(/G[+n)]
) [/Jp/*n]

) [/Js//Ls/]

) L/L/]/P7/s//L]]
) [/L//He//He//ER][ER/(/][*n)]
) [/L//He//He//Eh//ER/[]
) [/L//P8//L//P8]/L/]
) [/P10s//P9s//P9s/]
) [/P4///P8/]/P4[]
) [/P4/]

) [/P5n//P8n//P5n/]
) [/P68//Gy/]

) [/P68//PT7//S/[PT]]
) [/P68/[PTf[[PTf]]
) [/P6v/]

) [/P7//Al]/AL/(/G[*n)]
) [/P7//Al//AL[]
) [/P7//Pémo/[AL/]
(71) [/P7//P60/]
(72) [/P7//P7/(/P8]/S]/T//P8])]
(73) [/P7//PT7/[N/]
(74) [/P7//S//AL]]
(75) [/P7//S/]/T/(/G[*n)]

(76) [/P7//T//G]/G]]G]]

(77) [/P7//X//Gy/]

(78) [/P7d//P5no/]

(79) [/P7d/[]

(80) [/P7f//AL/]

(81) [/P7f]/Gy/]

(82) [/P7f//Hi/[1][Hi][P3a/]

(83) [/P7f//Hi/[S//Hi]/P3a/]

(84) [/P7f//Lo//L//L][L]]

(85) [/P7f]/P7f]/P7f/]

(86) [/P7f]/P7f/]

(87) [/P7s/]

(88) [/P7u//D/[P8/]

(89) [/P7u//Hb//P7u/]

(90) [/P7u//L//L/[/L]]

(91) [/P7u//P5//Hb//PTu/]

(92) [/P7u//P6u//Oh//Oh//OR//Oh/]
(93) [/P7u//P7/(/Oh/*n)]

(94) [/P7u//P7u//Ad/]

(95) [/P7u//PTu/[L/]

(96) [/P7u//P7u//Lo//Lo//Lo/]

97) [/P7u//P7u//P7u/]

(98) [/P7u//P7u/]

(99) [/P7u/]

(100) [/P7uo//AM/]/P7uo/]

(101) [/P7uo//Hb//P7uo/]
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(102)
(103)
(104)
(105)
(106)
(107)
(108)
(109)
(110)
(111)
(112)
(113)
(114)
(115)
(116)
(117)
(118)
(119)
(120)
(121)
(122)
(123)
(124)
(125)
(126)
(127)

[/P7uo//Hi//S//Hi//P3a/]
[/P7uo//P7uo/]
[/P8//P8/(/P8/[Fi/[Lo//L/)(/P8]/Fi//Lv/[L[)]
[/P8/(/P8//Fi//Lv//L/)(/P8//Fi//Lo//L[)/P8/]
[/P8/(/P8//Fi//Lv//L[)(/P8]/Fi/[Lo/[L/)]
[/P8/(/P8//Fi]/[Lv//L/)]
[/P8/(/S//T/[P8))(/S//T]/P8/)(/S//T//P8])]
[/P8/(/S//T//P8/)(/S]/T]/P8])]
[/P8/(/S//T//P8])]
[/P8//Ah/[AR/[]
[/P8//Fu//L/]
[/P8//Hb//P8/]
[/P8//Hi//I//Hi][P3a[]
[/P8//Hi/[S]/Hi[]
[/P8//Hi/[S/]
[/P8//1//L]/P8]]
[/P8//L/]
[/P8//0i/[0i[]
[/P8//P50/]
[/P8//PT7//AL][L[]
[/P8//P8/(/P8/[Fi/[Lv//L/)(/P8]/Fi//Lv/[L[)]
[/P8//P8//L//P7[]
[/P8//P8//PT7/[Lo/[L/]
[/P8//P8//P8/(/S//T//P8/)(/S//T/[P8/)(/S//T]/P8])]
[/P8//P8//P8/(/S/|T]/P8/)]
[/P8//P8//P8//P8//P8/(/S//T//P8/)(/S//T/[P8/)]
(128) [/P8//P8s//Us/]
(129) [/P8d/]
(130) [/P8l/xn]
(131) [/P8l//Fu//L/]
(132) [/P8l//P8l//P8l/]
(133) [/P8l//P8l/]
(134) [/P8l/]
(135) [/P8m//Gy/[He/]
(136) [/P8m//Hi/[Gy/]
[/P8m//L][]
[/P8m/[PTuso//Gy/]
[/P8m//P8m/[L/]
[/P8m//P8m//P8m/]
[/P8m//S//AL]/P8m/]
[/P8mo//P7a//P7a/]
[/P8n/]
[/P8so//Ah/]AR/]
[/P8so/]
[/P8su//D//P8l/]
[/P8su//D//P8m/]
[/P8su//L//L//L][]
[/P8su//P7/(/Oh/+n)]
[/P8su//P8l//L]/P8l]]P7]
[/P8su//P8su//L/(/G[*n)]
[/P8su//P8su//L/]
[/P8suv//L//P8suv//P8suv/]
[/P8u//Y/]
[/P8ua//Ah/]
[/P8ua//L//L/]
[/P8uo//I//P8uo/]
[/P9la/+n]

(137)
(138)
(139)
(140)
(141)
(142)
(143)
(144)
(145)
(146)
(147)
(148)
(149)
(150)
(151)
(152)
(153)
(154)
(155)
(156)
(157)
(158)

(159
(160
(161
(162

) [/P9s//P9so/]

) [/P9u/]

) [/Q/1Af]]

) [/S//T]/P7f]]
(163) [/S//V/]
(164) [/V /*n]
(165) [/V/]
(166) [/Vs/=n]
(167) [/wd/]
(168) [/W1//Wm//Wds/]
(169) [/WI//Ws//W[/Wd][]
(170) [/Wi/]
(171) [/Ws/xn]
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B Bigram Mutual Information Table 5: Example  of
top 75 mutual

information
scores (nor-
malized) for
phoneme E,
tokens are
from the first
quantizer.

(Continued)

Table 2 is for single tokens, while the table below contains the
mutual information scores for bigrams of tokens. The sharp drop
in mutual information scores suggest that for the first 41 bigrams,
these are completely unique for the phoneme, but the rest are
observed elsewhere and does not provide much information in
classification. This also shows that between phonemes there may
be more similarities than what we were able to distinguish manually,
and further investigation is needed in matching which n-gram of
tokens appear in which set of phonemes.

(317,132)  1.000

Table 5: Example of
(843,109)  1.000

top 75 mutual

information (27, 554) 1.000
scores (nor- (132, 975)  1.000
malized) for

phoneme  E, (956, 838)  1.000
tokens are (83,972) 1.000

from the first (838, 814)  1.000

quantizer.
(975,554)  1.000

Tokens MI score
(979,757)  1.000

(70, 554) 1.000
(464,731)  1.000

(794, 788)  1.000
(997,350)  1.000

(554,794)  1.000
(577, 65) 1.000

(419,317)  1.000
(788, 843)  1.000

(997,478)  1.000

(109, 464)  1.000
(478, 680)  1.000
(731,717)  1.000
(607, 153)  1.000
(325,27)  0.543
(55,577)  0.543
(567,693)  0.543

(153,83)  1.000
(972, 997)  1.000
(380,55)  1.000
(423,419)  1.000
(693,380)  1.000
(680,55)  1.000

(757, 423)  1.000
oot 080 1000 (823,604)  0.031
(766,766)  0.029
(613,956)  1.000 (685,766)  0.029
giz: :Z; 1:232 (604, 685)  0.029
(685, 685)  0.027
(554,979)  1.000 (604, 604)  0.022
e m
(577,235)  1.000 (766, 469) 0016
55,57 1000 (685, 604)  0.016

(766, 685)  0.013
(604, 766)  0.012
(685, 465)  0.012
(823,823)  0.011

(65, 70) 1.000
(55,384)  1.000
(350, 833)  1.000

Continued on next page
pag Continued on next page
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Table 5: Example of
top 75 mutual
information
scores (nor-
malized) for
phoneme E,
tokens are
from the first

quantizer.
(Continued)
(465, 604)  0.011
(465, 685)  0.011
(465, 465)  0.010
(585, 604)  0.010
(677, 823)  0.009
(465,766)  0.009
(677, 677)  0.009
(604, 465)  0.009
(733, 604)  0.008
(966, 766)  0.008
(604, 733)  0.008
(733,733)  0.008
(823, 685)  0.008
(823,585)  0.008
(766, 604)  0.008
(256, 604)  0.008
(643, 656)  0.008
(766, 966)  0.008
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